Difference between revisions of "AIClass"
From Bloominglabs
(→Topics) |
(→Information) |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
* [http://harold.uits.indiana.edu/~jtillots/AI-class/lectures Class lectures] | * [http://harold.uits.indiana.edu/~jtillots/AI-class/lectures Class lectures] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Resources == | == Resources == | ||
Line 18: | Line 10: | ||
== Topics == | == Topics == | ||
+ | |||
+ | *Philosophy of Mind (lecture 10) | ||
+ | ** [http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture10/Chap26.pdf Reading] | ||
+ | |||
+ | *Learning (lecture 9) | ||
+ | ** [http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture9/Chap20-21.pdf Reading] | ||
+ | |||
+ | *Vision (lecture 8) | ||
+ | ** [http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture8/chap24.pdf Reading] | ||
+ | ** [http://ninedegreesbelow.com/photography/all-the-colors.html RBG Color Gamuts] | ||
+ | ** [http://homepage.cs.uiowa.edu/~cwyman/classes/spring08-22C251/homework/canny.pdf Canny Edge Detection Algorithm] | ||
*IBM Watson (lecture 7) | *IBM Watson (lecture 7) | ||
− | **[http://www.slideshare.net/jahendler/watson-summer-review82013final Watson at RPI] | + | **[http://www.slideshare.net/jahendler/watson-summer-review82013final Watson at RPI (Slide Presentation)] |
**[http://nlp.cs.rpi.edu/course/spring14/nlp.html Open Source Watson] | **[http://nlp.cs.rpi.edu/course/spring14/nlp.html Open Source Watson] | ||
**[https://mu.lti.cs.cmu.edu/trac/oaqa CMU's OAQA (Open Advancement of Question Answering)] | **[https://mu.lti.cs.cmu.edu/trac/oaqa CMU's OAQA (Open Advancement of Question Answering)] | ||
**[https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/ibm_watson_how_to_build_your_own_watson_jr_in_your_basement7?lang=en How to build your own "Watson Jr." in your basement] | **[https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/ibm_watson_how_to_build_your_own_watson_jr_in_your_basement7?lang=en How to build your own "Watson Jr." in your basement] | ||
− | **[http://harold.uits.indiana.edu/~jtillots/AI-class/watson/ Articles] | + | <!-- **[http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture7/watson/ Articles] |
**Read: | **Read: | ||
− | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/watson/01Introduction.pdf Introduction] | + | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture7/watson/01Introduction.pdf Introduction] |
− | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/watson/12IdentifyImplicitRelationships.pdf Identifying Implicit Relationships] | + | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture7/watson/12IdentifyImplicitRelationships.pdf Identifying Implicit Relationships] |
− | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/watson/03DeepParsing.pdf Deep Parsing] | + | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture7/watson/03DeepParsing.pdf Deep Parsing] |
− | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/watson/07Typing.pdf Typing] | + | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture7/watson/07Typing.pdf Typing] |
− | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/watson/05AutomaticKnowledgeExtraction.pdf Automatic Knowledge Extraction] | + | ***[http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture7/watson/05AutomaticKnowledgeExtraction.pdf Automatic Knowledge Extraction] --> |
+ | |||
*Hidden Markov Models (lecture 6) | *Hidden Markov Models (lecture 6) | ||
** [http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture6/notes.txt Lecture notes] | ** [http://harold.uits.indiana.edu/~jtillots/AI-class/lectures/lecture6/notes.txt Lecture notes] |
Latest revision as of 00:19, 6 February 2015
[edit] Information
- Class mailing list: AI-class@bloominglabs.org
[edit] Resources
[edit] Topics
- Philosophy of Mind (lecture 10)
- Learning (lecture 9)
- Vision (lecture 8)
- IBM Watson (lecture 7)
- Hidden Markov Models (lecture 6)
- Bayesian Networks (lecture 4 and 5)
- Perceptrons/Neural Networks (lecture 3 and 4)
- Genetic Algorithms (lecture 2)
- Readings
- Online examples
- Examples from class
- Homework
- Implement an algorithm that solves the knapsack problem
- See the second reading for a description of the problem
- Data and data structure
- Search (lecture 1)